Rising, A. & Johansson, J. Towards spinning synthetic spider silk. Nat. Chem. Biol. 11, 309–315 (2015).
Google Scholar
Babb, P. L. et al. The Nephila clavipes genome highlights the variety of spider silk genes and their complicated expression. Nat. Genet. 49, 895–903 (2017).
Google Scholar
Hijirida, D. H. et al. 13C NMR of Nephila clavipes main ampullate silk gland. Biophysical J. 71, 3442–3447 (1996).
Google Scholar
Andersson, M., Holm, L., Ridderstraìšle, Y., Johansson, J. & Rising, A. Morphology and composition of the spider main ampullate gland and dragline silk. Biomacromolecules 14, 2945–2952 (2013).
Google Scholar
Father or mother, L. R. et al. Hierarchical spidroin micellar nanoparticles as the basic precursors of spider silks. Proc. Natl Acad. Sci. USA. 115, 11507–11512 (2018).
Google Scholar
Jin, H. J. & Kaplan, D. L. Mechanism of silk processing in bugs and spiders. Nature 424, 1057–1061 (2003).
Google Scholar
Jenkins, J. E. et al. Characterizing the secondary protein construction of black widow dragline silk utilizing solid-state NMR and X-ray diffraction. Biomacromolecules 14, 3472–3483 (2013).
Google Scholar
Holland, G. P., Creager, M. S., Jenkins, J. E., Lewis, R. V. & Yarger, J. L. Figuring out secondary construction in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 9871–9877 (2008).
Google Scholar
Hronska, M., van Beek, J. D., Williamson, P. T. F., Vollrath, F. & Meier, B. H. NMR characterization of native liquid spider dragline silk from Nephila edulis. Biomacromolecules 5, 834–839 (2004).
Google Scholar
Holland, G. P., Jenkins, J. E., Creager, M. S., Lewis, R. V. & Yarger, J. L. Quantifying the fraction of glycine and alanine in β-sheet and helical conformations in spider dragline silk utilizing solid-state NMR. Chem. Commun. 43, 5568–5570 (2008).
Google Scholar
Simmons, A., Ray, E. & Jelinski, L. W. Strong-State 13C NMR of Nephila clavipes Dragline silk establishes construction and identification of crystalline areas. Macromolecules 27, 5235–5237 (1994).
Google Scholar
Knight, D. P., Knight, M. M. & Vollrath, F. Beta transition and stress-induced section separation within the spinning of spider dragline silk. Int. J. Biol. Macromolecules 27, 205–210 (2000).
Google Scholar
Kenney, J. M., Knight, D., Smart, M. J. & Vollrath, F. Amyloidogenic nature of spider silk. Eur. J. Biochem. 269, 4159–4163 (2002).
Google Scholar
Blackledge, T. A. & Hayashi, C. Y. Silken toolkits: Biomechanics of silk fibers spun by the orb internet spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 209, 2452–2461 (2006).
Google Scholar
Hayashi, C. Y., Shipley, N. H. & Lewis, R. V. Hypotheses that correlate the sequence, construction, and mechanical properties of spider silk proteins. Int. J. Biol. Macromolecules 24, 271–275 (1999).
Google Scholar
Andersson, M. et al. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation through reverse results on the terminal domains. PLoS Biol. 12, e1001921 (2014).
Google Scholar
Hagn, F. et al. A conserved spider silk area acts as a molecular change that controls fibre meeting. Nature 465, 239–242 (2010).
Google Scholar
Kronqvist, N. et al. Sequential pH-driven dimerization and stabilization of the N-terminal area permits speedy spider silk formation. Nat. Commun. 5, 3254 (2014).
Google Scholar
Askarieh, G. et al. Self-assembly of spider silk proteins is managed by a pH-sensitive relay. Nature 465, 236–238 (2010).
Google Scholar
Rising, A., Hjälm, G., Engström, W. & Johansson, J. N-terminal nonrepetitive area widespread to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7, 3120–3124 (2006).
Google Scholar
Challis, R. J., Goodacre, S. L. & Hewitt, G. M. Evolution of spider silks: Conservation and diversification of the C-terminus. Insect Mol. Biol. 15, 45–56 (2006).
Google Scholar
Knight, D. P. & Vollrath, F. Adjustments in ingredient composition alongside the spinning duct in a Nephila spider. Naturwissenschaften 88, 179–182 (2001).
Google Scholar
Otikovs, M. et al. Diploma of biomimicry of synthetic spider silk spinning assessed by NMR spectroscopy. Angew. Chem. Int Ed. Engl. 56, 12571–12575 (2017).
Google Scholar
Landreh, M. et al. Mass spectrometry captures structural intermediates in protein fiber self-assembly. Chem. Commun. 53, 3319–3322 (2017).
Google Scholar
Andersson, M. et al. Biomimetic spinning of synthetic spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13, 262–264 (2017).
Google Scholar
Hagn, F., Thamm, C., Scheibel, T. & Kessler, H. PH-dependent dimerization and salt-dependent stabilization of the N-terminal area of spider dragline silk – Implications for fiber formation. Angew. Chem. – Int. Ed. 50, 310–313 (2011).
Google Scholar
Hedhammar, M. et al. Structural properties of recombinant nonrepetitive and repetitive components of main ampullate spidroin 1 from Euprosthenops australis: Implications for fiber formation. Biochemistry 47, 3407–3417 (2008).
Google Scholar
Jaudzems, Okay. et al. PH-dependent dimerization of spider silk N-terminal area requires relocation of a wedged tryptophan facet chain. J. Mol. Biol. 422, 477–487 (2012).
Google Scholar
Otikovs, M. et al. Diversified structural foundation of a conserved molecular mechanism for pH-dependent dimerization in spider Silk N-terminal domains. Chembiochem 16, 1720–1724 (2015).
Google Scholar
Kronqvist, N. et al. Environment friendly protein manufacturing impressed by how spiders make silk. Nat. Commun. 8, 15504 (2017).
Google Scholar
Arndt, T., Laity, P. R., Johansson, J., Holland, C. & Rising, A. Native-like circulate properties of a man-made spider silk dope. ACS Biomater. Sci. Eng. 7, 462–471 (2021).
Google Scholar
Gonska, N. et al. Construction-function relationship of synthetic spider silk fibers produced by straining circulate spinning. Biomacromolecules 21, 2116–2124 (2020).
Google Scholar
Finnigan, W. et al. The impact of terminal globular domains on the response of recombinant mini-spidroins to fiber spinning triggers. Sci. Rep. 10, 10671 (2020).
Google Scholar
Schmuck, B. et al. Excessive-yield manufacturing of a super-soluble miniature spidroin for biomimetic high-performance supplies. Mater. Right this moment 50, 1–8 (2021).
Google Scholar
Greco, G. et al. Properties of biomimetic synthetic spider silk fibers tuned by PostSpin tub incubation. Molecules 25, 3248 (2020).
Google Scholar
Koeppel, A. & Holland, C. Progress and traits in synthetic silk spinning: A scientific assessment. ACS Biomater. Sci. Eng. 3, 226–237 (2017).
Google Scholar
Qian, Z. G., Zhou, M. L., Track, W. W. & Xia, X. X. Twin thermosensitive hydrogels assembled from the conserved C-terminal area of spider dragline silk. Biomacromolecules 16, 3704–3711 (2015).
Google Scholar
DeSimone, E., Schacht, Okay. & Scheibel, T. Cations affect the cross-linking of hydrogels fabricated from recombinant, polyanionic spider silk proteins. Mater. Lett. 183, 101–104 (2016).
Google Scholar
Thamm, C., DeSimone, E. & Scheibel, T. Characterization of hydrogels fabricated from a novel spider silk protein eMaSp1s and analysis for 3D printing. Macromolecular Biosci. 17, 1700141 (2017).
Holland, C., Terry, A. E., Porter, D. & Vollrath, F. Evaluating the rheology of native spider and silkworm spinning dope. Nat. Mater. 5, 870–874 (2006).
Google Scholar
Laity, P. R. & Holland, C. The rheology behind stress-induced solidification in native silk feedstocks. Int. J. Molecular Sci. 17, 1812 (2016).
Jarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s illness and scrapie? Cell 73, 1055–1058 (1993).
Google Scholar
Harper, J. D. & Lansbury, P. T. Fashions of amyloid seeding in Alzheimer’s illness and scrapie: Mechanistic truths and physiological penalties of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).
Google Scholar
Wetzel, R. Kinetics and thermodynamics of amyloid fibril meeting. Acc. Chem. Res. 39, 671–679 (2006).
Google Scholar
Kaldmäe, M. et al. Excessive intracellular stability of the spidroin N-terminal area regardless of considerable amyloidogenic segments revealed by in-cell hydrogen/deuterium alternate mass spectrometry. FEBS J. 287, 2823–2833 (2020).
Google Scholar
Heiby, J. C., Goretzki, B., Johnson, C. M., Hellmich, U. A. & Neuweiler, H. Methionine in a protein hydrophobic core drives tight interactions required for meeting of spider silk. Nat. Commun. 10, 4378 (2019).
Google Scholar
Chen, G. et al. Full-Size Minor Ampullate Spidroin Gene Sequence. PLoS ONE 7, e52293 (2012).
Google Scholar
Chiti, F. & Dobson, C. M. Amyloid formation by globular proteins underneath native situations. Nat. Chem. Biol. 5, 15–22 (2009).
Google Scholar
Iannuzzi, C., Borriello, M., Portaccio, M., Irace, G. & Sirangelo, I. Insights into insulin fibril meeting at physiological and acidic ph and associated amyloid intrinsic fluorescence. Int. J. Molecular Sci. 18, 2551 (2017).
Noormägi, A., Valmsen, Okay., Tõugu, V. & Palumaa, P. Insulin fibrillization at acidic and physiological pH values is managed by completely different molecular mechanisms. Protein J. 34, 398–403 (2015).
Google Scholar
Eakin, C. M., Berman, A. J. & Miranker, A. D. A local to amyloidogenic transition regulated by a spine set off. Nat. Struct. Mol. Biol. 13, 202–208 (2006).
Google Scholar
Lim, Okay. H. et al. Strong-state NMR research reveal native-like β-sheet buildings in transthyretin amyloid. Biochemistry 55, 5272–5278 (2016).
Google Scholar
Dhulesia, A. et al. Native cooperativity in an amyloidogenic state of human lysozyme noticed at atomic decision. J. Am. Chem. Soc. 132, 15580–15588 (2010).
Google Scholar
Noji, M. et al. Breakdown of supersaturation barrier hyperlinks protein folding to amyloid formation. Commun. Biol. 4, 1–10 (2021).
Google Scholar
Jean, L., Lee, C. F., Hodder, P., Hawkins, N. & Vaux, D. J. Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: Islet amyloid polypeptide. Sci. Rep. 6, 1–10 (2016).
Google Scholar
Bhak, G., Lee, S., Park, J. W., Cho, S. & Paik, S. R. Amyloid hydrogel derived from curly protein fibrils of α-synuclein. Biomaterials 31, 5986–5995 (2010).
Google Scholar
Ray, S. et al. α-Synuclein aggregation nucleates via liquid–liquid section separation. Nat. Chem. 12, 705–716 (2020).
Google Scholar
Ye, X., Lendel, C., Langton, M., Olsson, R. T. & Hedenqvist, M. S. Protein nanofibrils: Preparation, properties, and attainable purposes in industrial nanomaterials. Industrial Functions of Nanomaterials (Elsevier Inc., 2019). https://doi.org/10.1016/B978-0-12-815749-7.00002-5.
Ye, X. et al. Protein Nanofibrils and Their Hydrogel Formation with Steel Ions. ACS Nano. 15, 5341–5354 (2021).
Google Scholar
Munialo, C. D., Martin, A. H., van der Linden, E. & de Jongh, H. H. J. Fibril formation from pea protein and subsequent gel formation. J. Agric. Meals Chem. 62, 2418–2427 (2014).
Google Scholar
Akkermans, C. et al. Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. J. Agric. Meals Chem. 55, 9877–9882 (2007).
Google Scholar
Tang, C. H. & Wang, C. S. Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin. J. Agric. Meals Chem. 58, 11058–11066 (2010).
Google Scholar
Rammensee, S., Huemmerich, D., Hermanson, Okay. D., Scheibel, T. & Bausch, A. R. Rheological characterization of hydrogels shaped by recombinantly produced spider silk. Appl. Phys. A: Mater. Sci. Course of. 82, 261–264 (2006).
Google Scholar
DeSimone, E., Schacht, Okay., Pellert, A. & Scheibel, T. Recombinant spider silk-based bioinks. Biofabrication 9, 44104 (2017).
Google Scholar
Humenik, M., Preiß, T., Gödrich, S., Papastavrou, G. & Scheibel, T. Functionalized DNA-spider silk nanohydrogels for managed protein binding and launch. Supplies Right this moment Bio. 6, 100045 (2020).
Neubauer, V. J., Trossmann, V. T., Jacobi, S., Döbl, A. & Scheibel, T. Recombinant spider silk gels derived from aqueous–natural solvents as depots for medication. Angew. Chem. – Int. Ed. 60, 11847–11851 (2021).
Google Scholar
Schacht, Okay. et al. Biofabrication of cell-loaded 3D spider silk constructs. Angew. Chem. Int Ed. Engl. 54, 2816–2820 (2015).
Google Scholar
Schacht, Okay. & Scheibel, T. Managed hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12, 2488–2495 (2011).
Google Scholar
Track, W. W. et al. On-demand regulation of twin thermosensitive protein hydrogels. ACS Macro Lett. 10, 395–400 (2021).
Google Scholar
Gao, T. et al. Optimization of gelatin-alginate composite bioink printability utilizing rheological parameters: A scientific method. Biofabrication 10, 034106 (2018).
LeRoux, M. A., Guilak, F. & Setton, L. A. Compressive and shear properties of alginate gel: Results of sodium ions and alginate focus. J. Biomed. Mater. Res. 47, 46–53 (1999).
Google Scholar
Nayar, V. T., Weiland, J. D., Nelson, C. S. & Hodge, A. M. Elastic and viscoelastic characterization of agar. J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).
Google Scholar
Valero, C., Amaveda, H., Mora, M. & García-Aznar, J. M. Mixed experimental and computational characterization of crosslinked collagen-based hydrogels. PLoS ONE 13, 1–16 (2018).
Google Scholar
Glassman, M. J. & Olsen, B. D. Arrested Part Separation of Elastin-like Polypeptide Options Yields Stiff, Thermoresponsive Gels. Biomacromolecules 16, 3762–3773 (2015).
Google Scholar
Kamel, S., Thiele, I., Neubauer, P. & Wagner, A. Thermophilic nucleoside phosphorylases: Their properties, traits and purposes. Biochimica et. Biophysica Acta – Proteins Proteom. 1868, 140304 (2020).
Google Scholar
Takegoshi, Okay., Nakamura, S. & Terao, T. 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001).
Google Scholar
Bennett, A. E., Griffin, R. G., Okay, J. H. & Vega, S. Chemical shift correlation spectroscopy in rotating solids: Radio frequency‐pushed dipolar recoupling and longitudinal alternate. J. Chem. Phys. 96, 8624–8627 (1992).
Google Scholar
Fung, B. M., Khitrin, A. Okay. & Ermolaev, Okay. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).
Google Scholar
Goldschmidt, L., Teng, P. Okay., Riek, R. & Eisenberg, D. Figuring out the amylome, proteins able to forming amyloid-like fibrils. Proc. Natl Acad. Sci. USA. 107, 3487–3492 (2010).
Google Scholar
Kuhlman, B. & Baker, D. Native protein sequences are near optimum for his or her buildings. Proc. Natl Acad. Sci. USA. 97, 10383–10388 (2000).
Google Scholar
Maurer-Stroh, S. et al. Exploring the sequence determinants of amyloid construction utilizing position-specific scoring matrices. Nat. Strategies 7, 237–242 (2010).
Google Scholar
Kricheldor, H. R. & Müller, D. Secondary construction of peptides. 3. 13C NMR cross polarization/magic angle spinning spectroscopic characterization of strong polypeptides. Macromolecules 16, 615–623 (1983).
Google Scholar
Wang, Y. Chance-based protein secondary construction identification utilizing mixed NMR chemical-shift information. Protein Sci. 11, 852–861 (2002).
Google Scholar
Source