Spidroin N-terminal area varieties amyloid-like fibril primarily based hydrogels and supplies a protein immobilization platform

New World Information Default Image

  • Rising, A. & Johansson, J. Towards spinning synthetic spider silk. Nat. Chem. Biol. 11, 309–315 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Babb, P. L. et al. The Nephila clavipes genome highlights the variety of spider silk genes and their complicated expression. Nat. Genet. 49, 895–903 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hijirida, D. H. et al. 13C NMR of Nephila clavipes main ampullate silk gland. Biophysical J. 71, 3442–3447 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Andersson, M., Holm, L., Ridderstraìšle, Y., Johansson, J. & Rising, A. Morphology and composition of the spider main ampullate gland and dragline silk. Biomacromolecules 14, 2945–2952 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Father or mother, L. R. et al. Hierarchical spidroin micellar nanoparticles as the basic precursors of spider silks. Proc. Natl Acad. Sci. USA. 115, 11507–11512 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jin, H. J. & Kaplan, D. L. Mechanism of silk processing in bugs and spiders. Nature 424, 1057–1061 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jenkins, J. E. et al. Characterizing the secondary protein construction of black widow dragline silk utilizing solid-state NMR and X-ray diffraction. Biomacromolecules 14, 3472–3483 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Holland, G. P., Creager, M. S., Jenkins, J. E., Lewis, R. V. & Yarger, J. L. Figuring out secondary construction in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 9871–9877 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hronska, M., van Beek, J. D., Williamson, P. T. F., Vollrath, F. & Meier, B. H. NMR characterization of native liquid spider dragline silk from Nephila edulis. Biomacromolecules 5, 834–839 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Holland, G. P., Jenkins, J. E., Creager, M. S., Lewis, R. V. & Yarger, J. L. Quantifying the fraction of glycine and alanine in β-sheet and helical conformations in spider dragline silk utilizing solid-state NMR. Chem. Commun. 43, 5568–5570 (2008).

    Article 
    CAS 

    Google Scholar 

  • Simmons, A., Ray, E. & Jelinski, L. W. Strong-State 13C NMR of Nephila clavipes Dragline silk establishes construction and identification of crystalline areas. Macromolecules 27, 5235–5237 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Knight, D. P., Knight, M. M. & Vollrath, F. Beta transition and stress-induced section separation within the spinning of spider dragline silk. Int. J. Biol. Macromolecules 27, 205–210 (2000).

    CAS 
    Article 

    Google Scholar 

  • Kenney, J. M., Knight, D., Smart, M. J. & Vollrath, F. Amyloidogenic nature of spider silk. Eur. J. Biochem. 269, 4159–4163 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Blackledge, T. A. & Hayashi, C. Y. Silken toolkits: Biomechanics of silk fibers spun by the orb internet spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 209, 2452–2461 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Hayashi, C. Y., Shipley, N. H. & Lewis, R. V. Hypotheses that correlate the sequence, construction, and mechanical properties of spider silk proteins. Int. J. Biol. Macromolecules 24, 271–275 (1999).

    CAS 
    Article 

    Google Scholar 

  • Andersson, M. et al. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation through reverse results on the terminal domains. PLoS Biol. 12, e1001921 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hagn, F. et al. A conserved spider silk area acts as a molecular change that controls fibre meeting. Nature 465, 239–242 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kronqvist, N. et al. Sequential pH-driven dimerization and stabilization of the N-terminal area permits speedy spider silk formation. Nat. Commun. 5, 3254 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Askarieh, G. et al. Self-assembly of spider silk proteins is managed by a pH-sensitive relay. Nature 465, 236–238 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rising, A., Hjälm, G., Engström, W. & Johansson, J. N-terminal nonrepetitive area widespread to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7, 3120–3124 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Challis, R. J., Goodacre, S. L. & Hewitt, G. M. Evolution of spider silks: Conservation and diversification of the C-terminus. Insect Mol. Biol. 15, 45–56 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Knight, D. P. & Vollrath, F. Adjustments in ingredient composition alongside the spinning duct in a Nephila spider. Naturwissenschaften 88, 179–182 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Otikovs, M. et al. Diploma of biomimicry of synthetic spider silk spinning assessed by NMR spectroscopy. Angew. Chem. Int Ed. Engl. 56, 12571–12575 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Landreh, M. et al. Mass spectrometry captures structural intermediates in protein fiber self-assembly. Chem. Commun. 53, 3319–3322 (2017).

    CAS 
    Article 

    Google Scholar 

  • Andersson, M. et al. Biomimetic spinning of synthetic spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13, 262–264 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hagn, F., Thamm, C., Scheibel, T. & Kessler, H. PH-dependent dimerization and salt-dependent stabilization of the N-terminal area of spider dragline silk – Implications for fiber formation. Angew. Chem. – Int. Ed. 50, 310–313 (2011).

    CAS 
    Article 

    Google Scholar 

  • Hedhammar, M. et al. Structural properties of recombinant nonrepetitive and repetitive components of main ampullate spidroin 1 from Euprosthenops australis: Implications for fiber formation. Biochemistry 47, 3407–3417 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jaudzems, Okay. et al. PH-dependent dimerization of spider silk N-terminal area requires relocation of a wedged tryptophan facet chain. J. Mol. Biol. 422, 477–487 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Otikovs, M. et al. Diversified structural foundation of a conserved molecular mechanism for pH-dependent dimerization in spider Silk N-terminal domains. Chembiochem 16, 1720–1724 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kronqvist, N. et al. Environment friendly protein manufacturing impressed by how spiders make silk. Nat. Commun. 8, 15504 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arndt, T., Laity, P. R., Johansson, J., Holland, C. & Rising, A. Native-like circulate properties of a man-made spider silk dope. ACS Biomater. Sci. Eng. 7, 462–471 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gonska, N. et al. Construction-function relationship of synthetic spider silk fibers produced by straining circulate spinning. Biomacromolecules 21, 2116–2124 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Finnigan, W. et al. The impact of terminal globular domains on the response of recombinant mini-spidroins to fiber spinning triggers. Sci. Rep. 10, 10671 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schmuck, B. et al. Excessive-yield manufacturing of a super-soluble miniature spidroin for biomimetic high-performance supplies. Mater. Right this moment 50, 1–8 (2021).

    Article 
    CAS 

    Google Scholar 

  • Greco, G. et al. Properties of biomimetic synthetic spider silk fibers tuned by PostSpin tub incubation. Molecules 25, 3248 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Koeppel, A. & Holland, C. Progress and traits in synthetic silk spinning: A scientific assessment. ACS Biomater. Sci. Eng. 3, 226–237 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Qian, Z. G., Zhou, M. L., Track, W. W. & Xia, X. X. Twin thermosensitive hydrogels assembled from the conserved C-terminal area of spider dragline silk. Biomacromolecules 16, 3704–3711 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • DeSimone, E., Schacht, Okay. & Scheibel, T. Cations affect the cross-linking of hydrogels fabricated from recombinant, polyanionic spider silk proteins. Mater. Lett. 183, 101–104 (2016).

    CAS 
    Article 

    Google Scholar 

  • Thamm, C., DeSimone, E. & Scheibel, T. Characterization of hydrogels fabricated from a novel spider silk protein eMaSp1s and analysis for 3D printing. Macromolecular Biosci. 17, 1700141 (2017).

  • Holland, C., Terry, A. E., Porter, D. & Vollrath, F. Evaluating the rheology of native spider and silkworm spinning dope. Nat. Mater. 5, 870–874 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Laity, P. R. & Holland, C. The rheology behind stress-induced solidification in native silk feedstocks. Int. J. Molecular Sci. 17, 1812 (2016).

  • Jarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s illness and scrapie? Cell 73, 1055–1058 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harper, J. D. & Lansbury, P. T. Fashions of amyloid seeding in Alzheimer’s illness and scrapie: Mechanistic truths and physiological penalties of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wetzel, R. Kinetics and thermodynamics of amyloid fibril meeting. Acc. Chem. Res. 39, 671–679 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaldmäe, M. et al. Excessive intracellular stability of the spidroin N-terminal area regardless of considerable amyloidogenic segments revealed by in-cell hydrogen/deuterium alternate mass spectrometry. FEBS J. 287, 2823–2833 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Heiby, J. C., Goretzki, B., Johnson, C. M., Hellmich, U. A. & Neuweiler, H. Methionine in a protein hydrophobic core drives tight interactions required for meeting of spider silk. Nat. Commun. 10, 4378 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Chen, G. et al. Full-Size Minor Ampullate Spidroin Gene Sequence. PLoS ONE 7, e52293 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chiti, F. & Dobson, C. M. Amyloid formation by globular proteins underneath native situations. Nat. Chem. Biol. 5, 15–22 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Iannuzzi, C., Borriello, M., Portaccio, M., Irace, G. & Sirangelo, I. Insights into insulin fibril meeting at physiological and acidic ph and associated amyloid intrinsic fluorescence. Int. J. Molecular Sci. 18, 2551 (2017).

  • Noormägi, A., Valmsen, Okay., Tõugu, V. & Palumaa, P. Insulin fibrillization at acidic and physiological pH values is managed by completely different molecular mechanisms. Protein J. 34, 398–403 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Eakin, C. M., Berman, A. J. & Miranker, A. D. A local to amyloidogenic transition regulated by a spine set off. Nat. Struct. Mol. Biol. 13, 202–208 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lim, Okay. H. et al. Strong-state NMR research reveal native-like β-sheet buildings in transthyretin amyloid. Biochemistry 55, 5272–5278 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dhulesia, A. et al. Native cooperativity in an amyloidogenic state of human lysozyme noticed at atomic decision. J. Am. Chem. Soc. 132, 15580–15588 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Noji, M. et al. Breakdown of supersaturation barrier hyperlinks protein folding to amyloid formation. Commun. Biol. 4, 1–10 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jean, L., Lee, C. F., Hodder, P., Hawkins, N. & Vaux, D. J. Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: Islet amyloid polypeptide. Sci. Rep. 6, 1–10 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bhak, G., Lee, S., Park, J. W., Cho, S. & Paik, S. R. Amyloid hydrogel derived from curly protein fibrils of α-synuclein. Biomaterials 31, 5986–5995 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ray, S. et al. α-Synuclein aggregation nucleates via liquid–liquid section separation. Nat. Chem. 12, 705–716 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ye, X., Lendel, C., Langton, M., Olsson, R. T. & Hedenqvist, M. S. Protein nanofibrils: Preparation, properties, and attainable purposes in industrial nanomaterials. Industrial Functions of Nanomaterials (Elsevier Inc., 2019). https://doi.org/10.1016/B978-0-12-815749-7.00002-5.

  • Ye, X. et al. Protein Nanofibrils and Their Hydrogel Formation with Steel Ions. ACS Nano. 15, 5341–5354 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Munialo, C. D., Martin, A. H., van der Linden, E. & de Jongh, H. H. J. Fibril formation from pea protein and subsequent gel formation. J. Agric. Meals Chem. 62, 2418–2427 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Akkermans, C. et al. Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. J. Agric. Meals Chem. 55, 9877–9882 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tang, C. H. & Wang, C. S. Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin. J. Agric. Meals Chem. 58, 11058–11066 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rammensee, S., Huemmerich, D., Hermanson, Okay. D., Scheibel, T. & Bausch, A. R. Rheological characterization of hydrogels shaped by recombinantly produced spider silk. Appl. Phys. A: Mater. Sci. Course of. 82, 261–264 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • DeSimone, E., Schacht, Okay., Pellert, A. & Scheibel, T. Recombinant spider silk-based bioinks. Biofabrication 9, 44104 (2017).

    Article 
    CAS 

    Google Scholar 

  • Humenik, M., Preiß, T., Gödrich, S., Papastavrou, G. & Scheibel, T. Functionalized DNA-spider silk nanohydrogels for managed protein binding and launch. Supplies Right this moment Bio. 6, 100045 (2020).

  • Neubauer, V. J., Trossmann, V. T., Jacobi, S., Döbl, A. & Scheibel, T. Recombinant spider silk gels derived from aqueous–natural solvents as depots for medication. Angew. Chem. – Int. Ed. 60, 11847–11851 (2021).

    CAS 
    Article 

    Google Scholar 

  • Schacht, Okay. et al. Biofabrication of cell-loaded 3D spider silk constructs. Angew. Chem. Int Ed. Engl. 54, 2816–2820 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schacht, Okay. & Scheibel, T. Managed hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12, 2488–2495 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Track, W. W. et al. On-demand regulation of twin thermosensitive protein hydrogels. ACS Macro Lett. 10, 395–400 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gao, T. et al. Optimization of gelatin-alginate composite bioink printability utilizing rheological parameters: A scientific method. Biofabrication 10, 034106 (2018).

  • LeRoux, M. A., Guilak, F. & Setton, L. A. Compressive and shear properties of alginate gel: Results of sodium ions and alginate focus. J. Biomed. Mater. Res. 47, 46–53 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nayar, V. T., Weiland, J. D., Nelson, C. S. & Hodge, A. M. Elastic and viscoelastic characterization of agar. J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Valero, C., Amaveda, H., Mora, M. & García-Aznar, J. M. Mixed experimental and computational characterization of crosslinked collagen-based hydrogels. PLoS ONE 13, 1–16 (2018).

    Article 
    CAS 

    Google Scholar 

  • Glassman, M. J. & Olsen, B. D. Arrested Part Separation of Elastin-like Polypeptide Options Yields Stiff, Thermoresponsive Gels. Biomacromolecules 16, 3762–3773 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kamel, S., Thiele, I., Neubauer, P. & Wagner, A. Thermophilic nucleoside phosphorylases: Their properties, traits and purposes. Biochimica et. Biophysica Acta – Proteins Proteom. 1868, 140304 (2020).

    CAS 
    Article 

    Google Scholar 

  • Takegoshi, Okay., Nakamura, S. & Terao, T. 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bennett, A. E., Griffin, R. G., Okay, J. H. & Vega, S. Chemical shift correlation spectroscopy in rotating solids: Radio frequency‐pushed dipolar recoupling and longitudinal alternate. J. Chem. Phys. 96, 8624–8627 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fung, B. M., Khitrin, A. Okay. & Ermolaev, Okay. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goldschmidt, L., Teng, P. Okay., Riek, R. & Eisenberg, D. Figuring out the amylome, proteins able to forming amyloid-like fibrils. Proc. Natl Acad. Sci. USA. 107, 3487–3492 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kuhlman, B. & Baker, D. Native protein sequences are near optimum for his or her buildings. Proc. Natl Acad. Sci. USA. 97, 10383–10388 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maurer-Stroh, S. et al. Exploring the sequence determinants of amyloid construction utilizing position-specific scoring matrices. Nat. Strategies 7, 237–242 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kricheldor, H. R. & Müller, D. Secondary construction of peptides. 3. 13C NMR cross polarization/magic angle spinning spectroscopic characterization of strong polypeptides. Macromolecules 16, 615–623 (1983).

    ADS 
    Article 

    Google Scholar 

  • Wang, Y. Chance-based protein secondary construction identification utilizing mixed NMR chemical-shift information. Protein Sci. 11, 852–861 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • CONTINUE READING……….


    Source

    • ( None )

    Paperchase: Tesco buys stationery model however not its outlets BBC Paperchase: Stationery chain falls into administration Sky Information Well-liked excessive avenue store ‘may collapse at present’ as hopes of sale fade… The Solar Paperchase plunges into administration after failing to search out a purchaser Every day Mail Tesco eyes shock bid to wrap up deal…..

    "
    "

    This Post's Trackback URL

    https://gtc1.org/spidroin-n-terminal-domain-forms-amyloid-like-fibril-based-hydrogels-and-provides-a-protein-immobilization-platform/trackback/